FILL_NA
Basic Overview
AVAILABLE FROM 6.13.1
Description | Fills missing values (N/A) on existing level combinations after the specified dimension is pivoted into columns. |
Signature | FILL_NA('Node' [, "Dimension" [, Value]]) |
Parameters |
|
Limitations |
|
Example
The time horizon of the project is 2021-2024.
The dimension “ProductDimension” consists of the level “Product” and the level values “Car”, “Van”, and “Truck”.
The input node features the level values “2022”, “2024” and “Car”, “Van”.
Input node =
Year | Product | Value |
---|---|---|
2022 | Car | 100 |
2024 | Van | 90 |
Pivoted input node by dimension “Time” =
Product | 2022 | 2024 |
---|---|---|
Car | 100 | N/A |
Van | N/A | 90 |
FILL_NA('Input node') = FILL_NA('Input node', “Time”, 0)
Product | 2022 | 2024 |
---|---|---|
Car | 100 | 0 |
Van | 0 | 90 |
This function fills the missing level values of the finest time dimension with 0. Notice that the formula does not fill the complete time horizon (e.g. expands the years “2021” and “2023”).
FILL_NA('Input node',"ProductDimension", 16) =
Year | Car | Van |
---|---|---|
2022 | 100 | 16 |
2024 | 16 | 90 |
This function fills the missing level values of the dimension “ProductDimension” with 16. Notice that the formula does not add any values available in the dimension that are not present in the input (e.g. “Truck”).